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Abstract

In an effort to understand early-stage polymer crystallization and the recently proposed spinodal mode of crystallization, we have
performed Brownian dynamics simulations of crystallizing polymer chains. We find that the mechanism of polymer crystallization is
nucleation and growth even in the induction period, although scattering data can be superficially fitted to the spinodal decomposition
description. The microscopic model used in our simulations reveals rich details of the kinetic pathway of polymer crystallization in very
early stages.q 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Recent time-resolved scattering experiments [1–7] are
able to probe polymer crystallization kinetics at very early
times. These investigations have revealed that formation of
sufficiently well-ordered crystalline domains is preceded by
density fluctuations reminiscent of spinodal decomposition
in polymer blends. The claim [8] that spinodal decomposi-
tion into two liquid phases occurs at early times prior to the
formation of crystalline nuclei in a one-component polymer
system is intriguing. Furthermore, although the phenomen-
ological theory of Lauritzen and Hoffman [9,10] is quite
successful in parameterizing various experimentally
observed growth laws, a theory of polymer crystallization
based on a microscopic description is desirable, as indicated
by the wealth of other theoretical studies [11–14] to this
end.

Motivated by these considerations, we have performed
Brownian dynamics simulations of polymer crystallization
from solution. We have modeled the polymer crystallization
by following the competition between the attraction among
non-bonded monomers and the torsional energies along the
chain backbone. In addition to monitoring the rich details of
the crystallization process, these simulations exhibit many
experimental observations previously reported in the litera-
ture, such as the inverse relation between lamellar thickness
and degree of undercooling, quantized kinetics of lamellar
thickening, and molecular fractionation at the growth front.

In addition, the present simulations offer an explanation of
the recently claimed “spinodal mode” of polymer crystal-
lization without invoking spinodal decomposition.

2. Simulation method

The simulation model attempts to incorporate just enough
detail to observe chain-folding without impeding the effi-
ciency of the simulation. As a result, the united atom model
for polyethylene is chosen for a polymer chain, in which
each methylene unit is treated as a bead in a bead-spring
model. Typical chain lengths,N, in our simulations range
from 500 to 10,000 united atoms. The force field parameters
are modeled after the paper by Paul et al. [15], which are in
close agreement with experimental measurements on the
polyethylene melt. Those parameters are slightly modified
in our model to enhance computational efficiency: the term-
inal methyl groups have the same force field parameters as
the methylene units, the chain torsional stiffness is higher,
and the bonds are more flexible. Similar computer simula-
tion approaches have recently appeared in the literature
[16–19].

The total potential energy consists of the potential energy
of each bond arising from bond stretchUr, bond angleUu ,
and bond torsionUf , and non-bonded bead–bead interac-
tion which is taken to be the Lennard-Jones interactionUL-J.
The potential energy associated with bond stretch is taken to
be

Ur � k�r 2 r0�2
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wherer is the bond length andr0 is the equilibrium bond
length. The spring constantk is taken to be 115 kcal/mol A˚ 2

and r0 � 1:54 �A: The potential energies associated with
bond angleu and torsion anglef are assumed to be of
the form

Uu � ku�cosu 2 cosu0�2

and

Uf � k1�1 2 cosf�1 k2�1 2 cos 2f�1 k3�1 2 cos 3f�
whereu0 � 1098; ku � 60:0; k1 � 3:02; k2 � 20:560; and
k3 � 2:58 kcal=mol: The Lennard-Jones potentialUL-J is

UL-J � e��s=r� 12 2 2�s=r� 6�
where the interaction strengthe is set to 0.112 kcal/mol. The
equilibrium distances is 4.53 Åfor beads further than five
repeat units apart along the chain backbone. In order to
enhance computational stability, beads that are closer than
five repeat units along the chain interact with as value
equal to 1.54 A˚ . This is expected to have little effect on
the behavior of the chain other than slightly increasing the
chain’s local flexibility. However, the stiff torsional
constraint overwhelms this enhancement. The Lennard-
Jones potential contains a coefficient of 2 for the attractive
part so that the minimum of this potential occurs atr � s:

For the actual computation, reduced units are used
throughout and all data presented here are expressed in
terms of the reduced units. The units have been renorma-
lized to a united-atom massm of 1, an equilibrium bond
lengthr0 of 1, and a Lennard-Jonese of 1. Thus, the reduced
temperature,Tp, is equal to kBT/e , the reduced energy isE/e
and the reduced time ist

��������
e=ms 2
p

:

The magnitude of the force field parameters shows that
the bond length and the bond angle are basically rigid, and
the torsional angle changes the most during the simulation.
We have found that the exact choices of bond length stiff-
ness and bond angle stiffness are unimportant as long as they
are high relative to the torsional angle parameters.

The equations of motion are integrated according to the
methodology of Langevin dynamics [20,21]. In Langevin
dynamics, the motion of the particles is described by the
Langevin equation (Eq. (1)) which consists of inertial terms,

force field, frictional drag, and noise, respectively [20,21].

�r i � 27Ui 2 G_r i 2 Wi�t� �1�
The Langevin dynamics method simulates the effect of indi-
vidual solvent molecules through the noiseW, which is
assumed to be Gaussian. The friction coefficientG is related
to the autocorrelation function ofW through the fluctua-
tion–dissipation theorem,

kWi�t�·Wj�t 0�l � dijd�t 2 t 0�6kBTG �2�
Furthermore, we setG to be 1, between the over-damped
regime and the purely deterministic regime. We use the
velocity Verlet finite-differencing scheme [21,22] for inte-
gration. This scheme, at larger time steps, is comparable in
accuracy to the Gear predictor–corrector algorithms [23],
but requires less memory and is simpler in implementation.
In the velocity Verlet algorithm, the velocities of the parti-
cles are calculated at every half time step, leading to greater
accuracy. The time step used in the data presented here is
0.004. Since in Langevin dynamics the effect of the solvent
is implicit, we can only estimate the relationship between
simulation time and real time. Due to the coarse-grained
nature of the united-atom model, the time unit is expected
to be longer than that of an atomistic model, on the order of
monomeric relaxation time rather than atomic relaxation
time. Based on the example of liquid argon [24], the relaxa-
tion time for a typical solvent molecule is of the order of
10212 s. We therefore expect the relaxation time of the
united atom to be also of the order of 10212 s. Since in
each iteration of a Langevin dynamics simulation the
noise is uncorrelated and the time step is 0.004, one time
unit in our simulation is on the order of 10210 s. The precise
relationship between the time unit used in the Langevin
dynamics simulations performed here and the actual time
is not yet established. Throughout the simulations, data are
collected at periodic intervals. These include the radii of
gyration, the kinetic and potential energies, and the spheri-
cally averaged single particle form factor,S�~q�; calculated
as

S�~q� � 1
N 2

XN
i�1

XN
j�1

sin�~q·~r ij �
~q·~r ij

�3�

where

u~qu � 4p
l

sin
u

2

� �
�4�

3. Results and discussion

The first step in our study is the determination of the
melting temperature for our model chains. We create a
random initial configuration and equilibrate it atTp �
15:0: Then, we quench the chain toTp � 10:0 and allow
crystallization to take place. Once a single chain-folded
structure is obtained, we perform several runs at heating
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Fig. 1. Primary nucleation sequence. Snapshots forN � 700 shown.



rates ranging from 0.0001 to 0.002Tp/time units. Disconti-
nuities are observed in the slopes of both the total potential
energy and global order parameter at the onset and ending of
melting. The equilibrium melting temperature is estimated
by extrapolation of the observed melting temperatures to
zero heating rate. This temperature is approximatelyTp �
11:0^ 0:2:

After determining the melting temperature as outlined
above, we proceed to study the primary nucleation in
which a chain folds into a lamellar crystal. As reported in
Ref. [25], Fig. 1 shows a typical sequence of images depict-
ing this event and the values of time are indicated in the
frames. A chain ofN � 700 beads is equilibrated above the
melting point �Tp � 12:0� and quenched toTp � 9:0: As
another example, in Fig. 2, a chain ofN � 2000 beads is
equilibrated above the melting point�Tp � 20:0� and
quenched toTp � 9:0: The time steps shown in the sequence
are selected from representative configurations during the
course of crystallization. As seen in Figs. 1 and 2, several
regions of segmental aggregation with some visibly appar-
ent local orientational order are formed, connected by the
same single chain. We refer to these regions as “baby
nuclei”. The strands connecting these baby nuclei are flex-
ible with considerable configurational entropy. As time
progresses, the monomers in the flexible strands are reeled

into the baby nuclei while the orientational order in each
nuclei increases. Simultaneously, the competition between
nuclei for further growth dissolves some nuclei. Thus, the
description is essentially the same as nucleation and growth
encountered in small molecular systems, except that the
polymer now is long enough to participate in several nuclei.
Similar regions as our “baby nuclei” composed of segments
from different chains have also been observed in simulations
of the “melt” state of oligomers [19].

We observe that the average distance between baby
nuclei does not change during this interval. But the number
of monomers in the connectors is reduced accompanied by
an increase in segmental orientation inside the nuclei as time
increases. To quantify this result, we plot in Fig. 3 the
difference in the structure factorS�~q; t� at time t and the
initial structure factorS�~q; 0�: As seen in experiments [1–
7], we observe a scattering peak at~qmax: In our simulations,
we find ~qmax to correspond to the spacing between baby
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Fig. 2. Typical chain conformational evolution in the early stages of crystal-
lization. Snapshots forN � 2000 shown.

Fig. 3. Typical scattering behavior in the early stages of crystallization.
Data forN � 2000 shown.

Fig. 4. Fluctuation growth rates as a function ofq2. Data forN � 2000
shown.

Fig. 5. Total scattering intensity as a function of time. Data forN � 2000
shown.



nuclei and the peak position to be essentially independent of
time in the early stages. Fig. 4 contains a plot ofVq=q

2

versusq2, whereV q is the rate of growth of fluctuations
with wave vector~q: According to the linearized theory of
spinodal decomposition for mixtures,S�~q; t� / exp�2Vqt�;
whereVq / q2�1 2 Bq2� with B being a positive constant.
Therefore, a plot ofVq=q

2 versusq2 must be linear with a
negative slope if spinodal decomposition is present. Experi-
mentalists have used this criterion to claim that spinodal
decomposition is the mechanism of polymer crystallization
at the early stage. As in experiments, we also observe that
Vq=q

2 versusq2 is linear with a negative slope. However,
this is not an evidence for spinodal decomposition because
this behavior is observed for intermediate values of~q: Our
results show that for small~q; Vq / q4

; in agreement with
experiments but in disagreement with the predictions of
spinodal decomposition.

The time-dependence of the total integrated intensityI is
plotted in Fig. 5. For early times, lnI is linear in time. At
later times�t $ 1000�; I grows very slowly with time. All of
these features are seen in experiments [1–7]. To get more
insight into this process, we present typical configurations at
various times in Fig. 6�t � 500; 1550, 7400 10300, 12850,
13350). For the sake of clarity, we have used two shades for
the polymer although the chain is a homopolymer. As
pointed out already, monomers in the connectors are trans-
ferred into the growing nuclei in the very early stage. This
process continues until the connector is essentially stretched
out while keeping the average inter-nuclei distance the
same. Then the connector is pulled into the nuclei to varying
degrees until the nuclei impinge against each other. This is
followed by a cooperative reorganization by which nuclei
merge to form a single lamella. The mechanism of the
merger is not by sequentially placing stems, but by a highly
cooperative process involving all stems of the lamella.

The merging of the nuclei can take long times depending
on chain length. As an example, Fig. 7 shows the config-
uration of a chain withN � 10000 att � 5000 undergoing
crystallization atTp � 9:0: Now the time taken for the coop-
erative rearrangement of the three nuclei to form one
lamella is very long. In fact, we find the structure to be
essentially static at the average configuration of Fig. 7
even at later times. It is hoped that our planned simulations
for large systems will lead to an understanding of the rela-
tionship between such kinetically frustrated [28] metastable
structures and the onset of lamellar branching in the context
of spherulites.

4. Conclusions

The Brownian dynamics simulations presented here show
that the mechanism of polymer crystallization at very early
stages is actually nucleation and growth, although the scat-
tering data can be superficially fitted to spinodal decompo-
sition. The key feature that distinguishes polymers from
small molecules at early stages of crystallization is that in
the case of polymers, a single chain can participate in
several nuclei. Although our observations are made for crys-
tallization from solutions whereas the experiments are for
melt-crystallized polymers, the essential features of the
simulation results reported here are seen [25] for many
chains also. We plan to simulate very high polymer concen-
trations in the future. We must also point out that structures
similar to our baby nuclei composed of segments from
different chains have been observed in simulations of the
“melt” state of oligomers [19]. Based on our extensive simu-
lation results underway, we believe that the primordial stage
of polymer crystallization is similar in both solution and
melt grown lamellae. We have previously reported [25] our
simulation results on: (i) the dependence of lamellar thickness
L on quench depthDTp, with L � �C1=DTp�1 C2; where
C1 andC2 are constants without any catastrophe, in agree-
ment with experiments [26]; (ii) crystallization at a growth
front as a function of commensurability between the thick-
ness of the growth front and the length of the crystallizing
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Fig. 6. Typical chain conformational evolution spanning time from the
early stages to the terminal stages of crystallization. The homopolymer
chain is partially shaded to illustrate movement of chain segments into
the crystalline domains. Snapshots forN � 2000 shown.

Fig. 7. Typical chain conformation forN � 10 000 displaying lamella frus-
tration.



chains; and (iii) the kinetic pathway of lamella thickening as
stepwise and quantized in agreement with experiments [27].
The interested reader should refer to Ref. [25].

Finally, we must point out that the quality of the chosen
potentials in our simulations plays a crucial role in
adequately describing various experimental systems.
Much more work is necessary before our simulations can
represent a particular experimental system. Nevertheless,
we believe that the essential features of polymer crystalliza-
tion are captured in our simulations.
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